INTERNAL ASSIGNMENT QUESTIONS M.Sc (STATISTICS) FINAL

2022

PROF. G. RAM REDDY CENTRE FOR DISTANCE EDUCATION (RECOGNISED BY THE DISTANCE EDUCATION BUREAU, UGC, NEW DELHI)

OSMANIA UNIVERSITY

(A University with Potential for Excellence and Re-Accredited by NAAC with "A" + Grade)

DIRECTOR Prof. G.B. Reddy Hyderabad – 7 Telangana State

PROF.G.RAM REDDY CENTRE FOR DISTANCE EDUCATION OSMANIA UNIVERSITY, HYDERABAD – 500 007

Jear Students,

Every student of M.Sc Statistics Final Year has to write and submit **Assignment** for each paper compulsorily. Each assignment carries **20 marks**. The marks awarded to you will be forwarded to the Controller of Examination, OU for inclusion in the University Examination marks. The candidates have to pay the examination fee and submit the Internal Assignment in the same academic year. If a candidate fails to submit the Internal Assignment after payment of the examination fee he will not be given an opportunity to submit the Internal Assignment afterwards, if you fail to submit Internal Assignments before the stipulated date the Internal marks will not be added to University examination marks under any circumstances.

You are required to **pay Rs.300/-** towards the Internal Assignment Fee through Online along with Examination fee and submit the Internal Assignments along with the Fee payment receipt at the concerned counter.

ASSIGNMENT WITHOUT THE FEE RECEIPT WILL NOT BE ACCEPTED

Assignments on Printed / Photocopy / Typed papers will not be accepted and will not be valued at any cost.

Only hand written Assignments will be accepted and valued.

Methodology for writing the Assignments:

- 1. First read the subject matter in the course material that is supplied to you.
- 2. If possible read the subject matter in the books suggested for further reading.
- 3. You are welcome to use the PGRRCDE Library on all working days including Sunday for collecting information on the topic of your assignments. (10.30 am to 5.00 pm).
- 4. Give a final reading to the answer you have written and see whether you can delete unimportant or repetitive words.
- 5. The cover page of the each theory assignments must have information as given in FORMAT below.

FORMAT

- 1 NAME OF THE COURSE
- 2. NAME OF THE STUDENT
- 3. ENROLLMENT NUMBER
- 4. NAME OF THE PAPER
- 5. DATE OF SUBMISSION
- 6. Write the above said details clearly on every assignments paper, otherwise your paper will not be valued.
- 7. Tag all the assignments paper-wise and submit
- 8. Submit the assignments on or before <u>8th July, 2022</u> at the concerned counter at PGRRCDE, OU on any working day and obtain receipt.

DIRECTOR

	MSC (Stats) - Final 2021-22		
	CDE ASSIGNMENT QUESTIONS Paper. I SUBJECT: STATISTICAL INFERENCE		
	(A) Give the correct choice of the answer like 'a' or 'b' etc in the brackets provided against th question, Each question carries ½ mark:	e	
1.	In a test procedure Accepting H_0 when it is actually false is called	()
	(a) Type I error (b) Type II error (c) Level of significance (d) None		
. 2.	The ratio of the likelihood functions under H_0 and under the entire parametric space is called	().
	(a) Probability ratio (b) Sequential ratio (c) Likelihood ratio (d) None	`	
3.	Equality of several normal population means is tested by	()
	(a) Bartlett's test (b) F test (c) t test (d) Z test		
4.	If T_1 and T_2 are two consistent estimators of a certain parameter θ , then T_1 is more efficient than T_2 sample sizes.	for al	l)
	(a) $V(T_1) > V(T_2)$ (b) $V(T_1) < V(T_2)$ (c) $V(T_1) = V(T_2)$ (d) None		
5.	If the Likelihood Ratio is λ , the variable -2log λ is approximately distributed as	()
	(a) χ^2 (b) t (c)F (d) None		
6.	The Non parametric test in which not only the signs but also the ranks of the observations are consid	lered i	s
	(a) Sign test (b) Wilcoxon signed rank test (c) Wilcoxon Mann Whitney – U test (d) None	()
7.	In Wilcoxon signed rank test $T^+ + T^- =$	()
	(a) The sample size n (b) n $(n+1)$ (c) n $(n-1)$ (d) $n(n+1)/2$		
8.	In SPRT B \leq	()
	(a) $\beta/(1-\alpha)$ (b) $\beta/(1+\alpha)$ (c) $(1-\beta)/\alpha$ (d) $(1+\beta)/\alpha$		
9.	The Kolmogorov Smirnov statistic D _n is	()
	(a) Min (D_n^+, D^-) (b) Not related to $D + and D - (c) Max (D^+, D^-)$ (d) None	,	,
	(a) With (D_n, D) (b) Not related to $D + and D - (c) Max (D, D)$ (d) Note		

10. In SPRT the bounds of two constants A and B are given by

.

	(B) Fill up the blanks, Each question carries ½ mark:			
1.	Homogeneity of several population variances can be tested bytest.			
2.	Spearman rank correlation is a non-parametric test that is used to measure the degree of association between two variables is given by			
3.	SPRT terminates with probability			
4.	A non parametric test sometimes called a <i>test</i> does not assume anything about the underlying distribution.			
5.	Pearson Lemma provides the of simple hypothesis against a simple alternative hypothesis.			
6.	The most commonly used nonparametric tests for the k-independent sample situation is			
7.	Quantitative analysts aim to represent a given reality in terms of a value.			
8.	The is used to determine if there is a significant relationship between two nominal (categorical) variables.			
9.	A best confidence Interval will have its width			
10.	To test for the randomness of given sample we apply			
	ach question carries 1 mark er the following questions within the space provided			
1.	State Neyman-Pearson Lemma.			
2.	Define Maximum likelihood Estimation.			
3.	Define Point Estimator?			
4.	Define LR test.			
5.	State Unbiased Estimator?			
6.	Write differences between Parametric and Non Parametric tests.			
7.	Define OC and ASN Function.			
8.	Define Run. Define Sign test.			
9.	Define Sign test.			

10. Define Wilcoxon Mann Whitney U- Statistic.

FACULTY OF SCIENCE M.Sc. STATISTICS FINAL YEAR (CDE) ASSESSMENT Paper- II: Linear Models and Design of Experiments

Date: Max. Ma		arks : 20	
Name of Candidate:Roll No:			
	SECTION-A (Multiple Choice : 10 x ¹ / ₂ = 5 Marks)		
1.	In the analysis of multiple regression model, regression sum of squares is given by		
	a) $\hat{\beta} XY$ b) $\hat{\beta} XY$ c) $\hat{\beta} XY$ d) $\hat{\beta} XY$	()
2	In the linear model $Y = X\beta + \varepsilon$ with $E(\varepsilon) = 0$ and $D(\varepsilon) = \sigma^2 I$, normal equations for estitute parameter vector β is given by a) $XY = (XX) \hat{\beta}$ b) $XY = (XX) \hat{\beta}$ c) $XY = (XX)^{-1} \hat{\beta}$ d) $XY = (XX)^{-1} \hat{\beta}$		
3.	In a multiple regression model with two independent variables each with n observations are	, erroi	[.] d.f
	a) n b) n-1 c) n-2 d) n-3	()
4.	In the linear model $Y = X\beta + \varepsilon$ with $E(\varepsilon) = 0$ and $D(\varepsilon) = \sigma^2 I$, variance covariance matrix is a) $(XX)\sigma^2$ b) $(XX)\sigma^2$ c) $(XX)^{-1}\sigma^2$ d) $(XX)^{-1}\sigma^2$	ix of , (ŝ)
5.	In a 2^3 factorial design the effect AB is same as	X	,
	a) BA b) A c) B d) ABC	()
6.	Sum of the coefficients of contrast of an effect is		
	a) one b) zero c) two d) None of the above	()
7.	In 2^4 factorial design with two replicates, the degrees of freedom for total sum of square a) 31 b) 15 c) 7 d) 5	es is ()
8.	Youden Squares are incomplete		
	(a) RBD (b) CRD (c) LSD (d) Both a and c	()
9.	If $\beta = 0$ in one way ANCOVA model with single factor, then analysis reduces to		

e.

	a) ANOVA two way classification b ANCOVA two way classification		
	c) ANOVA one way classification d) None of the above	()
10.	In 2^5 factorial design the no. of factors are		
	a) four b) five		
	c) two d) three	. ()
	Section-B 10 x 1/2 = 5M)		
	Fill in the blanks. Each question carries half Mark.		
11.	The d.f for total sum of squares in 2 ³ factorial design with two replicates is	D	
12.	The two-way classification with ANCOVA model is	<u> </u> .	
13.	A linear function of the response vector Y is said to be a linear zero function, if		
13.	$E(CY) = \underline{\qquad}$		
14.	An estimate of error variance σ^2 obtained using repeated observations on the response is called		
15.	According to Gauss Markoff theorm, unbiased estimate of error variance σ^2 is		
16.	Linear zero functions are some times referred to as		
17.	If the mean square is significantly greater than the pr	ior	
	estimate of error variance σ^2 , then lack of fit of the regression model is considered	d	
18.	The Fisher's Least Significant difference between two treatment means		
10	$= \frac{1}{24 \text{ being } 1}$		
19. 20.	The number of treatment combinations in 2^4 design, are	<u> </u>	
20.	The sum of squares of an effect in 2 ³ factorial design is		<u> </u> •
	Write short answers to the following. Each question carries		
	one Mark.		
21.	State Gauss Markoff theorem		
	State the properties of Residual		
22. 23.	Define linear parametric function and linear zero function, state the relation		
	between two functions.		
24.	What are multiple comparison tests		
25.	State the properties of Least Square Estimators		
26.	Give the layout of 2^3 factorial design with two replicator	1/	
27.	Explain the Concept of Fractional factorial designs	nusha	
28. 29.	Explain the Split-Plot Design .		
29.		nusha	
30.	Explain the Lattice Design		

31. Explain the Youden square design

7036048190

1

FACULTY OF SCIENCE M.SC. II YEAR CDE ASSIGNMENT: JUNE 2022 SUBJECT: STATISTICS PAPER- III: OPERATIONS RESEARCH

Date:

Max. Marks: 20

)

)

(

Note: 1. Answer Section-A & Section-B on the Question paper by taking print of these pages.

2. Answer the questions in Section C in the order that specified in Q.P. on white papers.

- (a) Give the correct choice of the answer like 'a' or 'b' etc in the brackets provided against the question, each question carries ¹/₂ marks:
 - 1. In an Assignment problem, if the number of rows is less than the number of columns then we need to add ()

(a) dummy row (b) dummy column (c) dummy row and a dummy column (d) constant

2. Lpp with two variables can be solved by _____ method. ()

(a) Graphical (b) Simplex (c) Big - M (d) Both b and c

3. In Game theory, if minmax is equal to maxmin. Then value is refer as point ()

(a) saddle (b) non equilibrium (c) profit (d) all the above

4. Goal programming problem deals with

(a) Single goal (b) Multi goals (c) Priority goals (d) All the above 5. If the constraint is $7x_{1}+6x_{2} = 30$ then we need to add variable. (

(a) Slack (b) Surplus (c) Artificial (d) Both b and c

6. In Big M method the cost of artificial variable is taken as

(a) 1 (b) -1 (c) -M (d) Cannot be said

7. In Critical Path Method we can obtain a path which has ()

(a) Minimum Distance (b) Maximum Distance (c) Constant Distance (d) cannot be said

8. In Assignment problem, to obtain the optimal solution, draw lines through _____ rows and columns. ()

(a) Marked, Marked (b) marked, Unmarked (c) Unmarked, Marked (d) Unmarked,

Uni	narked
-----	--------

9. If the primal pro	oblem has unbounde	d solution then the	dual problem has		
solution				()
(a) Feasible (b) In	nfeasible (c) unbound	ded (d) None			
10 . Dynamic prog	ramming problem is	a	decision system.	()
(a) Single stage	(b) Two stage	(c) Multi stages	(d) Cannot be	e said	
) Fill up the blanks,	each question carri	ies ½ marks:			
1. Dual of Dual	is				
2. The net evalu	ations of the primal s	slack variables will	be the solution to	the	
3. In M/M/1 que	variables. eueing models, first N	M is stand for			
4. At EOO Orde	ring cost	Carrying cost			
	ethod, when basis co		need to use		
6. In Integer Pro	gramming Problem,	decision variable s	nould be		
	cing the total elapsed		-		
	for			_*	
			minimum ratios	e then	sucl
-	/n as				
problem is know	n as es of order 2 x n or m	·································	method	is	
problem is know 10. For the game used to solve the	n as es of order 2 x n or m			is	
problem is know 10. For the game used to solve the c) Answer the fol	on ases of order 2 x n or m game.	n x 2 ach question carrie		is	
problem is know 10. For the game used to solve the c) Answer the fol 1. Define Linear F	on as es of order 2 x n or m game. lowing questions, es	ach question carrie	es 1 mark	. is	
 problem is know 10. For the game used to solve the c) Answer the fol 1. Define Linear P 2. Explain why we 	on as es of order 2 x n or m game. lowing questions, es Programming Problem	ach question carrients	es 1 mark	is	
 problem is know 10. For the game used to solve the c) Answer the fol 1. Define Linear P 2. Explain why we 3. Explain about u 	on as es of order 2 x n or m game. lowing questions, es Programming Problem e introduce an artific	ach question carrients	es 1 mark	is	
problem is know 10. For the game used to solve the c) Answer the fol 1. Define Linear P 2. Explain why we 3. Explain about u 4. Define Primal a	on as es of order 2 x n or m game. lowing questions, es Programming Problem e introduce an artific nbalanced Assignme	ach question carrier m. ial variable into the ent Problem.	es 1 mark simplex table.	is	

7. Define Bellman's Principle of Optimality.

8. Define DPP.

A STATE OF A

9. Explain the need for Integer programming problem and give two of its applications.

10. Define Carrying cost and set up cost in Inventory.

Ranjitha Chul (ff)

7386082735

Mounika Finay

Ĭ

FACULTY OF SCIENCE M.Sc. (FINAL) INTERNAL ASSESSMENT SUBJECT : STATISTICS Paper-IV: TIME SERIES ANALYSIS

1.	 Holt-Winter method is applicable when the time series data consists of a) trend and cyclical components b) trend and seasonal components c) seasonal and cyclical components d) trend, seasonal and cyclicalComponent ()
2.	The Spectral density function $g(f) =$ a) $I(f)/\sigma_z^2$ b) $E \{I(f)\}$ c) $P(f)/\sigma_z^2$ d) $E \{P(f)\}$ ()
3.	The residual analysis will help in evaluating the ARIMA model fora) adequacyb) inadequacyc) Stationaryd) none of the above
4.	To get the initial estimates of AR or MA or ARMA processes we usea) Least squares methodb) Maximum likelihood methodc) neither a) nor b)d) both a) and b)()
5.	In an ARIMA(p, d, q) process, order of the polynomial g(B) is a) p+d b) p+q c) q+d d) p+d+q ()
6.	The equation $T_t = \beta(L_t - L_{t-1}) + (1 - \beta) T_{t-1}$ represents trend in a) Holt Winter b) Winter c) Stationary d) none of the above ()
7	In the model $Z_t(1-1.8B+1.9B^2) = a_t$ the values of g_1 , g_2 are a) 1.8, 1.9 b) -1.8, -1.9 c) 1.8, -1.9 d) -1.8, 1.9 ()
8.	Functions which are helpful in in identifying the order of stationary time series ARIMAmodel isa) ACFb) PACFc) ACF and PACFd) none of the above()
9.	The model of ARIMA(0, 1, 1) is a) $\nabla Z_t = a_t + \theta_1 a_{t-1}$ b) $\nabla Z_t = (1 - \theta_1 B) a_t$ c) $\nabla Z_t = a_t + \varphi_1 a_{t-1}$ d) $\nabla Z_t = (1 + \varphi_1 B) a_t$ ()
10.	The model $\widetilde{Z}_{i} = \varphi_{2} \widetilde{Z}_{i-2} + a_{t}$ represents a) AR(1) b) AR(2) c) MA(2) d) MA(1) (··)

II. Fill in the blanks

- 1. ARIMA(p, d, q) can be expressed in _____ explicit forms.
- 2. The inverted form of ARIMA (p, d, q) model is _____.
- 3. To convert a non-stationary time series to stationary time series _______.
- 4. In ARIMA (0, d, 1) process $\varphi_1 = _$.
- 5. Initial estimates of AR(2) process are _____
- 6. The residuals of AR(1) process are _____
- 7. The white noise process \mathbf{a}_t follows normal distribution with mean _____ and variance

8. For an ARMA(p, q) process ACF is a mixture of ______ and

- 9. The correlation coefficient between the t- origin forecasts errors at lead time 1 and 1+j, $\rho(e_t(1), e_t(1+j)) =$
- 10. Auto correlation function of forecasts errors at different time origin with same lead time $\rho(e_t(1), e_t-j(1)) =$

III. Answer the following questions:

- 1. What are the different methods of Forecasting?
- 2. Write difference equation form of ARIMA?
- 3. Find ψ weights for an ARIMA (1, 1, 1) model
- 4. Write the diagnostic checks for the given time series model
- 5. Write the expression for forecasts in integrated form
- 6. What is the necessity of smoothing in a time series
- 7. What is a stochastic time series model
- 8. What is a periodogram?
- 9. Write the AR(2) model. Write the conditions for stationarity
- 10. What is an autocovariance function? Write the expression for AR(p) process?